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SUMMARY

Neural circuit mapping is generating datasets of tens
of thousands of labeled neurons. New computational
tools are needed to search and organize these data.
We present NBLAST, a sensitive and rapid algorithm,
for measuring pairwise neuronal similarity. NBLAST
considers both position and local geometry, decom-
posing neurons into short segments; matched seg-
ments are scored using a probabilistic scoringmatrix
defined by statistics of matches and non-matches.
We validated NBLAST on a published dataset of
16,129 single Drosophila neurons. NBLAST can
distinguish neuronal types down to the finest level
(single identified neurons) without a priori informa-
tion. Cluster analysis of extensively studied neuronal
classes identified new types and unreported topo-
graphical features. Fully automated clustering orga-
nized the validation dataset into 1,052 clusters,
many of which map onto previously described
neuronal types. NBLAST supports additional query
types, including searching neurons against trans-
gene expression patterns. Finally, we show that
NBLAST is effective with data from other inverte-
brates and zebrafish.

INTRODUCTION

Correlating the functional properties and behavioral relevance

of neurons with their cell type is a basic activity in neural circuit

research. While there is no universally accepted definition of

neuron type, key descriptors includemorphology, position within

the nervous system, genetic markers, connectivity, and intrinsic

electrophysiological signatures (Migliore and Shepherd, 2005;

Bota and Swanson, 2007; Rowe and Stone, 1977). Despite this

ambiguity, neuron type is a key abstraction, helping to reveal

organizational principles and enabling results to be compared
Neuron 91, 293–311, July 20, 2016 ª 2016 MR
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and collated across research groups. There is increasing

appreciation that highly quantitative approaches are critical to

generate cell-type catalogs in support of circuit research (Ascoli

et al., 2008; Nelson et al., 2006; Kepecs and Fishell, 2014) (http://

acd.od.nih.gov/presentations/brain-interim-report.pdf).

Since neuronal morphology and position strongly constrain

connectivity, they have been mainstays of circuit studies for

over a century. Classic morphological techniques include the

Golgi method used by Cajal, microinjection, and intracellular fills

during recording. Recently, genetic approaches to sparse and

combinatorial labeling have enabled increasingly large-scale

characterization of single-neuronmorphology (Jefferis and Livet,

2012).

Classically, the position of neuronal somata or arbors was

established relative to anatomical landmarks, revealed by a gen-

eral counterstain; this is especially effective in brain regions with

strong laminar organization, e.g., cerebellum (Cajal, 1911), retina

(e.g., Badea and Nathans, 2004; Kong et al., 2005; Sümbül et al.,

2014), or fly optic lobe (Fischbach and Dittrich, 1989; Morante

and Desplan, 2008). Recently, 3D light microscopy and image

registration have enabled direct image fusion to generate digital

3D atlases of brain regions or whole brains (Jefferis et al., 2007;

Lin et al., 2007; El Jundi et al., 2010; Rybak et al., 2010; Cachero

et al., 2010; Yu et al., 2010b; Sunkin et al., 2013; Zingg et al.,

2014; Oh et al., 2014). Atlases can generate specific, testable

hypotheses about circuit organization and connectivity at large

scales. For example, Chiang et al. (2011) combined genetic

mosaic labeling and image registration to produce an atlas of

over 16,000 single cells embedded within a standard Drosophila

brain (FlyCircuit dataset).

Neuronal morphologies can be represented as directed graph

structures embedded in 3D space; usually this is the (arbitrary)

physical space of the imaging system, rather than a brain atlas.

For this reason, databases such as NeuroMorpho.org (Parekh

and Ascoli, 2013) contain >37,500 neurons but omit precise po-

sitional information. Data on this scale present both an acute

challenge, finding and organizing related neurons, but also an

opportunity: quantitative morphology may help solve the prob-

lem of defining cell type. A key requirement is a tool enabling

rapid and sensitive computation of neuronal similarity within
C Laboratory of Molecular Biology. Published by Elsevier Inc. 293
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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and between datasets. This has clear analogies with bioinfor-

matics: the explosion of biological sequence information from

the late 1980s motivated the development of sequence similarity

tools such as BLAST (Altschul et al., 1990), enabling rapid data-

base queries as well as hierarchically organized protein family

databases.

Several strategies for measuring neuronal similarity exist with

distinct target applications and different underlying data struc-

tures (Cardona et al., 2010; Basu et al., 2011; Mayerich et al.,

2012; Ganglberger et al., 2014; Wan et al., 2015). For example,

Cardona et al. (2010) developed an elegant approach to match

curves in space and validated this on a few hundred traced

structures; however, this algorithm treats each unbranched

neuronal segment as a separate alignment problem, so there

is no natural way to handle trees with many such segments.

Recently, Wan et al. (2015) developed a sophisticated approach

that combines graph matching with 3D positional information for

sensitive global alignment of fully branched neurons, but this

carries a significant computational cost (minutes per pair of

neurons).

Our own approach started with a simple but flexible represen-

tation of neurons as point clouds with vectors defining the local

heading of individual processes (Masse et al., 2012). We found

that this can be efficiently computed for single-neuron data re-

fractory to automated tracing (Peng et al., 2015), as well as

more complex expression patterns. Combining this representa-

tion with a very large single-neuron dataset (Chiang et al., 2011)

allowed us to validate a new algorithm, NBLAST, that is flexible,

extremely sensitive, and very fast (pairwise search times of 2 ms

on a laptop). Critically, the algorithm’s scoring parameters are

defined statistically rather than by expert intuition, but generalize

across neuronal classes.

We first describe the NBLAST algorithm, providing an open

source implementation in R and a web query tool. We validate

NBLAST for applications including neuron database search, un-

supervised clustering, and expression pattern search. NBLAST

can identify well-studied neuronal types inDrosophilawith sensi-

tivity matching domain experts, in a fraction of the time. NBLAST

can also identify new neuronal types and reveal undescribed fea-

tures of topographic organization. Finally, we apply our method

to 16,129 neurons from the FlyCircuit dataset, reducing this to a

non-redundant set of 1,052morphological clusters.Manual eval-
Figure 1. Image Preprocessing, Registration, and NBLAST Algorithm

(A) Flowchart describing the image preprocessing and registration procedure. Fly

images were registered against the FCWB template. Successful registrations we

(B) Neurons in the right hemisphere were flipped to the left. Brain plots show 50 ran

flipping was assessed manually.

(C) NBLAST algorithm. The similarity of two neurons (query and target) is a function

of the query/target pair. This function reflects the probability of a match between

(D) Diagram illustrating how nearest-neighbor points are calculated. For a quer

minimizing the distance (di).

(E) Defining the scoring function. Random pairs of neurons within two groups, D

(F) Brain plot of DL2 uPNs.

(G) Calculation of the distribution for matching and non-matching pairs of segmen

histogram were calculated for absolute dot product (10 bins) and distance (21 bin

(pmatch) or non-matching pairs (prand) by normalizing the distance histogram to

(H) Plot showing that similarity score depends on distance between points and t

(I) Summary diagram of the desktop and online NBLAST implementation.
uation of a subset of clusters shows they closely match expert

definition of cell types. These clusters, which we organize into

an online supercluster hierarchy, represent a preliminary global

cell type classification for the Drosophila brain.

RESULTS

Algorithm
Our goal was to develop a neuron similarity algorithm depending

on both spatial location (within a brain or brain region) and

branching pattern that was both extremely sensitive and very

fast. We envisaged searching large databases of neurons

(10,000–100,000 neurons), clustering neurons into families by

calculating all-against-all similarity matrices, and efficient navi-

gation of such large datasets. We eventually selected an

approach based on direct pairwise comparison of neurons

pre-registered to a template brain and represented as vector

clouds (further details in Supplemental Information, available

online).

The starting point for our algorithm is to break neurons into

short segments, each characterized by a location and tangent

vector. This retains local geometry, but not the topology of the

neuron’s branching structure. This simplified representation

can be constructed for image data that would not permit auto-

mated reconstructions. To prepare such data in quantity, we

developed an image processing pipeline summarized in Fig-

ure 1A (see Experimental Procedures). Briefly, brain images

from the FlyCircuit dataset (Chiang et al., 2011) were subjected

to non-rigid image registration (Jefferis et al., 2007) to a new

intersex template brain. Neuron images were thresholded and

skeletonized (Lee et al., 1994) using Fiji (Schindelin et al.,

2012), thresholded images were converted to the point and

tangent vector (i.e., local heading) representation (Masse et al.,

2012) using our R package nat (Jefferis and Manton, 2014),

and tangent vectors were computed as the first eigenvector of

a singular value decomposition (SVD) of each point and its five

nearest neighbors.

After preprocessing, 3D data were visualized and analyzed in

R (Figure 1B). Neurons had amedian of 1,070 points/vectors; the

16,129 neurons occupied 1.8 GB, fitting comfortably in a lap-

top’smainmemory. Since the fly brain is almost completely sym-

metric, we mapped all neurons to the left hemisphere (defined
Circuit images were split into two channels. The Dlg-stained brain (Discs large)

re applied to neuron skeletons converted into points and vectors.

dom neurons before and after flipping. On the right, cases for which the neuron

of the distance and absolute dot product between nearest-neighbor segments

a pair of segments (pmatch) relative to a random pair (prand).

y (N1)/target (N2) pair, each point of N1 (ui) is matched to a point in N2 (vi),

L2 uPNs and all remaining neurons, were compared.

ts. For all segment pairs of all neuron pairs in each group, the distance and a 2D

s). These histograms were converted to joint probability densities for matching

sum to 1.

he vector direction (absolute dot product).
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primarily by cell body location; see Experimental Procedures and

Figure 1B) using a non-rigid mirroring procedure (Manton et al.,

2014).

We then calculated NBLAST pairwise similarity scores using

this database of preprocessed, aligned neurons. For a given

query and target neuron, we iterate over each segment in the

query neuron, identifying the nearest neighbor (Euclidean dis-

tance) in the target neuron (Figures 1C and 1D). The score for

the segment pair is a function of two measurements: di, the dis-

tance between matched segments (indexed by i), and
���ui!,vi

! ��� ,
the absolute dot product of the two tangent vectors; the absolute

dot product is used because the head-to-tail orientation of

tangent vectors is arbitrary (Figure 1C). The scores are then

summed over each segment pair to give a raw score, S:

Sðquery; targetÞ=
Xn

i = 1

f
�
di;

���ui
!,vi

! ���
�
: (Equation 1)

The next question is, what is an appropriate function

fðdi;
���ui!,vi

! ��� Þ? Our approach was inspired by the BLAST scoring

system (Altschul et al., 1990). For each segment pair, we defined

the score as the log probability ratio,

f = log2

pmatch

prand

; (Equation 2)

i.e., the probability that the segment pair was derived from a pair

of neurons of the same type, versus a pair of unrelated neurons.

We then defined pmatch empirically using the joint distribution of

d and
���ui!,vi

! ��� for pairs of neurons of the same type (Figures

1E–1G); we used 150 olfactory projection neurons (PNs) inner-

vating the same glomerulus, therefore unambiguously the

same neuronal type (Figure 1F). prand was calculated by drawing

5,000 random pairs of neurons from the database, assuming that

the large majority of such pairs are unrelated neurons. Joint dis-

tributions were calculated for both groups and normalized to

convert them to probabilities, and the log ratio defined the final

scoring matrix (Figure 1G). Plotting the scoring matrix empha-

sizes the strong distance dependence of the score but also

shows that for segment pairs closer than �10 mm, the logarithm

of the odds score increases markedly as the absolute dot prod-

uct moves from 0 to 1 (Figure 1H).

We implemented the NBLAST algorithm as an R package

(nat.nblast), building on a high-performance k-nearest neighbor
Figure 2. NBLAST Allows Different Search Types

(A) Searching for neurons with NBLAST. Pairwise scores between a query and ta

(B) NBLAST search using a whole query neuron against the FlyCircuit dataset. T

(C) NBLAST search using a neuron fragment against the FlyCircuit dataset. The

(C0) Search with the mALT tract from an olfactory PN (Cha-F-000239). Lateral ob

(C0 0 ) Search with lALT tract from an olfactory PN (Gad1-F-200095). Anterior view

(D) NBLAST search of neuron against FlyLight GAL4 lines.

(D0) From left to right: query neuron (Trh-M-300069), volume rendering of query a

(E) NBLAST search for FlyCircuit neurons matching a fragment from a fruitless n

(E0 ) Volume rendering of pMP-e clone with the traced fragment (anterior and late

(E0 0) Query fragment in lateral view. Top ten hits in anterior and lateral view.

(F) NBLAST search for FlyCircuit neurons matching fragment traced from GAL4

(F0) Maximum Z projection of line R18C12.

(F0 0 ) The query fragment traced in Vaa3D (anterior view). Top three hits (anterior

(G) GAL4 traces (Peng et al., 2014) matching selected FlyCircuit neuron (VGlut-F
library (nabor), that immediately enables pairwise queries,

searches of a single query neuron against a database of target

neurons (Figure 2), and all-by-all searches (Figure 1I). Runtimes

on a single core laptop computer were 2 ms per comparison or

30 s for all 16,129 neurons. In order to enable interactive neuron

clustering, we also pre-computed an all-by-all similarity matrix

for all 16,129 neurons (2.63 108 scores, 1.0 GB). We also devel-

oped a simple web application (see jefferislab.org/si/nblast),

enabling online queries of this test dataset (Figure 1I).

NBLAST Finds Whole or Partial Matches for Diverse
Query Objects
NBLAST is flexible, identifying both global and partial matches

for multiple classes of queries (Figure 2). The only requirements

are that these objects (or fragments) must be registered

against a template brain and converted to a point and vector

representation.

Our first example queries a (whole) FlyCircuit neuron against

16,129 FlyCircuit neurons. The top hits are very similar neurons

with small differences in length and neurite position (Figure 2B).

Using this search type, we identified Kenyon cell (KC), olfactory

projection, and auditory neuron classes and subclasses, known

and new (Figures 4 and S6). A second example uses an axon

fragment; all top hits follow the same axon tract, but their variable

axonal and dendritic arbors define distinct neuron types (Fig-

ure 2C). NBLAST searches using a neuron fragment could

identify known and new visual projection and mAL neuron types

(Figures 5, S5, and 6). In a third example, we query against 3,501

FlyLight GAL4 driver lines (Jenett et al., 2012), finding lines that

contain the query neuron (Figure 2D).

User tracings can also be used as queries. We traced the

characteristic bundle of 20–30 primary neurites of the fruitless

neuroblast clone pMP-e that generates male-specific P1 neu-

rons (Kimura et al., 2008; Cachero et al., 2010). This returned

many P1 neurons (Figure 2E), identifying new subtypes likely

to have distinct functions in male behavior (Figure 6). A

similar approach can be used to identify candidate neuronal

types labeled by genetic driver lines even when the detailed

morphology of individual neurons cannot be determined: we

traced the main neurites of a cell cluster in a GAL4 line (Jenett

et al., 2012) (Figure 2F) and used that trace as the query. NBLAST

identified three very similar FlyCircuit neurons, which completely

overlapped with the GAL4 expression pattern. These three
rget neurons produce a ranked result set.

he query (fru-M-400121), top hit, and top ten hits in anterior view.

query and top ten hits are shown.

lique view; inset shows mALT tract for top ten hits.

; inset shows lALT tract of top ten hits.

nd best GAL4 hit (R52H12), and maximum Z projection of hit.

euroblast clone (pMP-e).

ral views).

image (R18C12) (Jenett et al., 2012).

and dorsal views).

-500818). The top ten trace hits are shown (anterior and dorsal views).
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neurons appear to be different subtypes, each varying in their

terminal arborizations. Conversely, we used one tracing from a

published projectome dataset containing >9,000 neurite fibers

(Peng et al., 2014) to find similar FlyCircuit neurons (Figure 2G).

NBLAST Scores Are Sensitive and Biologically
Meaningful
A good similarity algorithm should be sensitive enough to reveal

identical neurons with certainty, while having the specificity to

ensure that all high-scoring results are relevant. We used the

full FlyCircuit dataset to validate NBLAST performance.

Our first example uses an auditory interneuron, fru-M-300198,

as query (Figures 3A–3C). The highest NBLAST score was the

query neuron itself (it is present in the database), followed by

the top hit (fru-M-300174), which completely overlaps with the

query (Figure 3A0). A histogram of NBLAST scores showed that

the top hit was clearly an outlier, scoring 96.1% compared to

the self-match score of the query neuron (Figure 3C). Further

investigation revealed that these ‘‘identical twins,’’ both derived

from the same raw confocal image, were likely the result of a data

entry error. The next eight hits are also very similar to the query

but are clearly distinct specimens, having small differences in

position, length, and neurite branching that are typical of sister

neurons of the same type (Figure 3A0 0).
The score histogram shows that only a minority of hits (3%)

have a score above 0 (Figures 3Band3C). A score of 0 represents

a natural cutoff for NBLAST, since it means that, on average,

segment pairs from this query and target neuron have a similarity

level that is equally likely to have arisen from a random pair of

neurons in the database as a pair of neurons of the same type.

We divided the neurons with score >0 into 8 groups with

decreasing similarity scores (Figure 3C0). Only the highest-

scoring real hits (group II) appear to be of exactly the same

type, although lower-scoring groups contain neurons that would

be ranked as very similar.

Although raw NBLAST scores correctly identify similar neu-

rons, they are not comparable from one query neuron to the

next: the score depends on neuron size and segment number.

This confounds search results for neurons of very different sizes

or when the identity of query and target neurons is reversed. For

example, a search with a large neuron as query and a smaller one

as target (pair 1) will have a very low forward score because the

large neuron has many unmatched segments, but a high reverse

score, since most of target will match part of the query (Fig-

ure 3D). One approach to correct for this is to normalize the
Figure 3. NBLAST Scores Are Accurate and Meaningful

(A) NBLAST search with fru-M-300198 (black).

(A0) Query neuron (black) and top hit (red). The top hit is a different segmentation

(A0 0 ) Top eight hits have differences in neurite branching, length, and position.

(B) All hits with forward score >0, colored by score, as shown in (C).

(C) Histogram of forward scores for fru-M-300198. Only hits with scores >�5,0

zoomed view of top hits (score > 6,500). See also Figure S1.

(C0) Neurons in each of the score bins in (C).

(D) Comparison of raw, normalized, and mean score for two pairs of neurons: on

(E) Histogram of normalized top scores for each neuron in thewhole dataset. Them

(F) Plot of normalized reverse and forward scores for 72 pairs of neurons exceed

decreasing predicted similarity: same segmentation, same raw image, same sp

scores for all top hits with threshold of 0.8 indicated by two black lines.
scores by the size of the query neuron. Although normalized

scores are comparable, unequal forward and reverse scores be-

tween large and small neurons remain an issue. One simple

strategy is to calculate the mean of the forward and reverse

scores (mean score). Two neurons of similar size have a higher

mean score than two neurons of unequal size (Figure 3D).

Repeating the analysis of Figures 3C and 3C0 using mean scores

(Figure S2) eliminated some false matches due to unequal size.

During our analysis, we sporadically noticed cases where two

database images were derived from the same physical spec-

imen (Figure S1). We tested if NBLAST could identify these in-

stances. We collected the top hit for each neuron and analyzed

the distribution of forward (Figure 3E) and reverse scores (data

not shown). A small tail (�1% of all top hits) has anomalously

high scores (>0.8). Given this distribution, we examined neuron

pairs with forward and reverse scores >0.8. We classified these

72 pairs into 4 different groups. From highest to lowest predicted

similarity, the groups are as follows: same segmentation, i.e.,

a neuron image duplicated after segmentation (Figure S1A);

same raw image, resulting in different segmentations of the

same neuron (Figure 3B0); same specimen, i.e., two separate

confocal images from the same brain (Figure S1B); and different

specimen, when two neurons are actually from different brains

(but of the same neuron type). The distribution of NBLAST scores

for these four categoriesmatches the predicted hierarchy of sim-

ilarity (Figure 3F). These results underline the high sensitivity of

the NBLAST algorithm to small differences between neurons.

Taken together, these results validate NBLAST as a sensitive

and specific tool for finding similar neurons.

NBLAST Scores Can Distinguish Kenyon Cell Classes
We next investigated whether NBLAST scores can be used to

cluster neurons, potentially revealing functional classes. We

began with KCs, the intrinsic neurons of the mushroom body

and an intensively studied population given their key role in

memory formation and retrieval (reviewed in Kahsai and Zars,

2011).

There are around 2,000 KCs in each mushroom body (Aso

et al., 2009), whose axons form the medial lobe, consisting of

the g, b0, and b lobes, and the vertical lobe, consisting of the a

and a0 lobes. The dendrites form the calyx around which cell

bodies are positioned; the axon peduncle joins the calyx to the

lobes (Figure 4C). Three main classes of KCs are recognized,

named by the lobes they innervate: g neurons are the first

born, a0/b0 neurons are generated next, and last born are a/b
of the same raw confocal image.

00 are shown. Left inset shows score histogram for all hits; right inset shows

e of unequal (Q1, T1) and one of similar size (Q2, T1).

ean and 99th percentile are shown as dashed red and green lines, respectively.

ing threshold score of 0.8. These pairs were classified into four categories of

ecimen, and different specimen. Inset shows normalized reverse and forward
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Figure 4. NBLAST Search and Clustering Reveal Kenyon Cell Subtypes

(A) Hierarchical clustering (HC) of KCs (n = 1,664). Bars below the dendrogram indicate the g (green), a0/b0 (blue), and a/b neurons (magenta); h = 8.9.

(B) Plot of all g neurons. KC exemplars plotted in gray for context.

(B0) HC of g neurons (I–III); h = 3. Neuron plots of groups I–III. Lateral oblique and posterior views of neurons and lateral view of slice through horizontal lobe.

(legend continued on next page)
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neurons. Four neuroblasts each generate the whole repertoire of

KC types (Lee et al., 1999).

We started with a dataset of 1,664 KCs, representing 10.3%of

the FlyCircuit dataset (see Supplemental Information for selec-

tion protocol), and calculated raw NBLAST scores of each KC

against all others. Iterative hierarchical clustering allowed us to

identify the main KC types, followed by detailed analyses that

distinguished several subtypes.

For g neurons (Figure 4B), we identified the classical neurons

(Figure 4B0) (groups I and III), the recently described gd neurons

(group a) (Aso et al., 2009, 2014), and two previously uncharac-

terized types (groups b and c) (Figure 4B0 0). Analysis of a0/b0

neurons highlighted the characterized subtypes of these

neurons (Figure S3C), which differ in their anterior/posterior

position in the peduncle and b0 lobe (Tanaka et al., 2008; Aso

et al., 2014).

The largest KC subset corresponds to a/b neurons (Figure 4D).

We identified neurons from each of the four neuroblast lineages

(Figure 4D0) (Zhu et al., 2003), and for each of these, we distin-

guished morphological subtypes that correlate to their birth

time (Figures 4D0 0 and S3D0): the last born (a/b core) inside the

a lobe, the earlier (a/b) surface layer, and the earliest born (a/b

posterior or pioneer) (Tanaka et al., 2008).

Hierarchical clustering of KCs using NBLAST scores therefore

resolved KCs into three main types, identified the reported sub-

types, and even isolated uncharacterized subtypes in an inten-

sively studied cell population. This supports our claim that the

NBLAST scores are a good metric when searching for similar

neurons and organizing large datasets of related cells.

NBLAST IdentifiesClassic Cell Types at the Finest Level:
Olfactory PNs
We have shown that clustering NBLAST scores can identify KC

types. However, it remains uncertain what corresponds to an

identified cell type, which we take to be the finest neuronal clas-

sification in the brain. We therefore analyzed a different neuron

family, the olfactory PNs, which represent one of the best-

defined cell types in the fly brain.

PNs transmit information between antennal lobe glomeruli,

which receive olfactory input, and higher brain centers, including

the mushroom body and the lateral horn (Masse et al., 2009).

Uniglomerular PNs (uPNs) are unambiguously classified into

individual types based on the glomerulus innervated by their

dendrites and the axon tract they follow; these features show

fixed relationships with their axonal branching patterns in higher
(B0 0) HC of atypical g neurons (group II in B0) divided into three groups (a–c). Neuro

See also Figure S3.

(C) Mushroom body neuropil and subregions.

(D) Neuron plot of a/b neurons. KC exemplars plotted in gray for context.

(D0) HC of a/b neurons divided into four groups (1–4); h = 3.64. Neuron plots of gro

lateral oblique views.

(D0 0) HC of group 2 divided into three subgroups. Lateral oblique, posterior oblique

core and surface neurons, respectively; green subgroup corresponds to a/b pos

(E) Hierarchical clustering of uPNs (non-DL2s) (n = 214) cut into 35 groups (1–35) a

colored by dendrogram group. Neurons that innervate each glomerulus are indic

neuroblast are indicated as vVA1lm and vDA1. Dendrogram groups correspond to

groups (12–13, 15–16, respectively) (red arrowhead), and the outlier neuron VM5

(F) Neurons for groups 1–5 from (E); antennal lobe in green; lateral horn in purple
centers and their parental neuroblast (Marin et al., 2002; Jefferis

et al., 2001, 2007; Wong et al., 2002; Yu et al., 2010a; Tanaka

et al., 2012).

We manually classified the 400 FlyCircuit uPNs by glomerulus

(see Experimental Procedures). We found a very large number of

DL2 uPNs (145DL2d and 37DL2v), out of 397 classified neurons.

Nevertheless, our final set of uPNs broadly represents the total

variability of described classes and contains neurons innervating

35 out of 56 different glomeruli (Tanaka et al., 2012), as well as

examples of the three main lineage clones and tracts.

We computed mean NBLAST scores for each uPN versus the

other 16,128 neurons, checking if the top hit was exactly the

same uPN type, another uPN type, or a match to a different

neuron class (Figure S4A). There were only eight cases in which

the top hit did not match the query’s type. These matches repre-

sented cases of uPNs innervating a neighboring glomerulus or

multiglomerular PNs. This exercise encapsulates a very simple

form of supervised learning (k-nearest neighbor with k = 1 and

leave-one-out cross-validation) and shows that NBLAST scores

are a useful metric, with an error rate of 2.4% for 35 classes; it

is noteworthy that there was a huge amount of distracting infor-

mation since uPNs represented only 2.47% of the 16,128 test

neurons.

We also compared how the top three hits matched the query

type (Figure S4B). For uPN types with more than three examples

(non-DL2, n = 187), we collected the top three NBLAST hits for

each of these neurons. We achieved very high matching rates:

in 98.9% of cases (i.e., all but two), at least one of the top hits

matched the query type, and all three hits matched the query

type in 95.2% of cases.

Given the very high prediction accuracy, we wondered if unsu-

pervised clustering based on NBLAST scores would group uPNs

by type. To test this, we clustered uPNs (non-DL2, n = 214) and

cut the dendrogram at a height of 0.725: at this level most groups

corresponded to single-neuron types. For types with more than

one representative neuron, all neurons co-clustered, with three

exceptions (Figures 4E, 4F, and S4). The cluster organization

also reflects higher-level features such as the axon tract/neuro-

blast of origin. Thus, unsupervised clustering of uPNs based

on NBLAST scores gives an almost perfect neuronal classifica-

tion: our two expert annotators took three iterative rounds of

consensus-driven manual annotation to better this error rate of

1.4%.

In conclusion, these results demonstrate that morphological

comparisonbyNBLAST ispowerful enough to resolvedifferences
n plots of groups a–c, a, and b and c. Group a corresponds to the gd subtype.

ups 1–4, which match neuroblast clones AM, AL, PM, and PL in posterior and

, and dorsal view of a peduncle slice are shown. Red and blue subgroupsmatch

terior subtype (a/bp) (see also Figure S3D). AcCa, accessory calyx.

t h = 0.725. Dendrogram shows glomerulus for each neuron. Inset shows uPNs

ated by black rectangles under dendrogram. Neurons originating from ventral

unique neuron types, except for DL1 and DA1 neurons, which are split into two

v in group 9 (red asterisk).

. See also Figure S4.
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at the finest level of neuronal classification. Furthermore, they

suggest that unsupervised NBLAST clustering could help reveal

new neuronal types.

NBLAST Can Define New Cell Types
We wished to show the usefulness of whole and partial NBLAST

searches in classifying other well-studied neuron types, and

especially in identifying new cell types. We analyzed the visual

PNs (VPNs), which relay information between optic lobe and

the central brain (Figures 5 and S5). This is a morphologically

diverse group with 44 types already described (Otsuna and Ito,

2006). We clustered FlyCircuit VPNs based only on the parts of

their skeletons that overlap the central brain neuropils; this iden-

tified 11 known VPN types, 3 new subclasses, and 4 subtypes of

unilateral VPNs (Table S1).

Another large and diverse neuron group is the auditory neu-

rons. Several distinct types have been described based on

anatomical and physiological features (Yorozu et al., 2009; Lai

et al., 2012; Kamikouchi et al., 2006, 2009; Matsuo et al.,

2016). Using simple whole-neuron searches, we were able to

reveal new subtypes that differed mainly in their lateral arboriza-

tions (Figure S6; Table S2).

We also studied two classes of fruitless-expressing, sexually

dimorphic neurons, critical for courtship behavior, the mAL

(Koganezawa et al., 2010; Kimura et al., 2005) and P1 neurons

(Kimura et al., 2008). We calculated NBLAST scores for partial

mAL skeletons containing their axonal and dendritic arbors,

clustering cleanly separated male and female neurons (Figures

6A and 6B; Supplemental Experimental Procedures), and identi-

fied three main types and two subtypes for the male neurons

(Figure 6C). These male neurons include types with correlated

differences in the position of input and output arbors (and likely

therefore in functional connectivity). Clustering P1 neurons

identified ten anatomical subtypes (Figure 6D). Nine of these

contained only male neurons, each with highly distinctive pat-

terns of dendritic and axonal arborization, suggesting that they

are likely to integrate distinct sensory inputs and connect with

distinct downstream targets. The last group consists only of

female neurons, suggesting that a small population of female

neurons shares anatomical features (and likely originates from

the same neuroblast) with the male P1 neurons, key regulators

of male behavior.

These analyses demonstrate that NBLAST scores for whole

neurons or subregions can highlight morphological features

important for defining neuron classes and provide an efficient

and quantitative way to identify new cell types even for inten-

sively studied neuronal classes.
Figure 5. NBLAST Classification of Visual PNs

(A) Clustering of unilateral (uVPNs) and bilateral visual PNs (bilVPNs). Inset show

showing neuropils with most overlap. See also Figure S5.

(A0) Hierarchical clustering (HC) of uVPNs divided into 21 groups (I–XXI); h = 3.65

(A0 0 ) HC of bilVPNs divided into 8 groups (i–viii); h = 1.22. Group ii corresponds t

(B) Reclustering of uVPN groups I, II, and III from A0. Only neuron segments within

were used for NBLAST HC. The dendrogram was cut into groups 1–7; h = 1.69.

neurons; group 2, LC9. Groups 3 and 4, two new LC10B subtypes. Groups 5 and

five subgroups of LC10 neurons, four of them not previously identified (see also

(C) Plots of neuron skeletons with partial confocal image Z projections for selected

neuron.
Superclusters and Exemplars to Organize Huge Data
We have shown that NBLAST clustering can identify known and

novel neuron types starting from a collection of neurons of

a particular superclass (e.g., olfactory PNs). However, isolating

such neuronal subsets requires considerable time. We next es-

tablished a method to organize large datasets, extracting the

main types automatically, retaining information on the similarity

between types and subtypes, and allowing quicker navigation.

We used affinity propagation clustering (Frey and Dueck, 2007),

combined with hierarchical clustering, to achieve this. Applying

affinity propagation to the 16,129 neurons in the FlyCircuit data-

set resulted in 1,052clusters (Figures7Aand7B), eachcharacter-

ized by a single exemplar neuron. Hierarchical clustering of the

exemplars and manually removing eleven stray neurons isolated

the central brain neurons (groups B and C) (Figure 7C). Further

hierarchical clustering of central brain exemplars revealed large

superclasses of neuron types (groups I–XIV), with most contain-

ing ananatomically distinct subset, e.g., central complexneurons

(I), P1 neurons (II), KCs (IV and V), and auditory neurons (VIII) (Fig-

ures 7D and 7D0). There were, however, superclusters for which

the classification logic was not as clear (XI and XII, for example).

The affinity propagation clusters are also useful for identifying

neuronal subtypes by comparing all clusters that contain a spec-

ified neuronal type (Figure 7E). We present examples for the

neuronal types AMMC-IVLP PN 1 (AMMC-IVLP PN1) (Lai et al.,

2012), and the uVPNs LC10B and LC4. For each of these,

morphological differences are clear between clusters, suggest-

ing that each one might help to identify distinct subtypes.

In short, combining affinity propagation with hierarchical clus-

tering is an effective way to organize and explore large datasets,

condensing information into a single exemplar, while retaining

the ability to move up or down in the hierarchical tree, revealing

broader superclasses or more narrow subtypes.

NBLAST Extensions
NBLAST is a powerful tool for working with single neurons from

the adult fly; however, the algorithm was designed to be general.

We now illustrate NBLAST in a wide variety of experimental

contexts.We first use 40 neurons reconstructed from a complete

serial section electronmicroscopy (EM) volume of theDrosophila

larva. Clustering NBLAST scores recovers functional groups of

neurons within a multimodal escape circuit (Figure 8A) (Ohyama

et al., 2015). Pruning fine terminal branches from the EM

reconstructions (mimicking light level reconstructions) has little

impact on cluster assignments; therefore, NBLAST clustering

of coarsely skeletonized neurons could be an important step to

organize EM connectome data.
s neuropils to which NBLAST was restricted. At right, plots of neuron groups,

.

o the LC14 neuron type (Otsuna and Ito, 2006).

anterior optic tubercle (AOTU) or posterior ventrolateral protocerebrum (PVLP)

Neuron plots match dendrogram groups to known uVPN types. Group 1, LC6

7, possible new LC10 types. Group 6, LC10A neurons. This analysis identified

Table S1 and Figure S5B).

types.White rectangle in inset shows location of close-up. LC, lobula columnar
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We next show two examples applying NBLAST to single-cell

data from another invertebrate, the monarch butterfly, and a

vertebrate, the larval zebrafish (Figures 8B and 8C). Clustering

29 monarch butterfly neurons from the central complex (Heinze

et al., 2013) largely matches neuronal types defined by expert

neuroanatomists—the few discrepancies were reviewed with

the data provider and determined to be cases where computa-

tionally defined cell groups revealed features that were orthog-

onal to expert classification but still a valid classification.

The zebrafish data consisted of 55 mitral cells (second-order

olfactory neurons) projecting to a variety of higher brain areas

(Miyasaka et al., 2014). NBLAST clustering identified clearly

distinct morphological groups (Figure 8C). Very similar neurons

were co-clustered both by our algorithm and that of the original

authors, but clustering of distantly related neurons was distinct.

Only future experiments will show if one clustering has more

functional relevance.

In our final example, we apply NBLAST to a distinct but exper-

imentally vital form of neuroanatomical image data. Circuit

neuroscience in many model organisms depends on manipu-

lating circuit components with cell-type-specific driver lines.

We have registered (Manton et al., 2014) and processed image

data from the most widely used Drosophila collection, 3,501

GMR driver lines generated at the Janelia Research Campus

(Jenett et al., 2012). We applied an image processing pipeline

emphasizing tubular features (Masse et al., 2012), generating a

vector cloud representation identical to that used elsewhere in

this paper. These data (9 Gb for 3,501 image stacks) can be

queried with single neurons or tracings in less than 30 s on a

desktop computer. To demonstrate this approach at scale, we

mapped GAL4 data to the same template space (Manton et al.,

2014) as the FlyCircuit single neurons (merging these data

in silico) and computed NBLAST scores for 16,129 neurons

against 3,501 driver lines. We provide a simple web server for

these queries at jefferislab.org/si/nblast/on-the-fly. We show-

case this by identifying GAL4 driver lines targeting the sexually

dimorphic mAL neuron population (Figures 8D and 8D0). We

selected ten mAL neurons and then examined the ten GAL4

lines with the highest mean scores. The top hit line R43D01

has just been identified as targeting this population (Kallman

et al., 2015), and all the top ten hits target the same population.

As a second example, we looked at driver lines labeling olfac-

tory PNs targeting the CO2-responsive V glomerulus. Compre-

hensive single-cell labeling identified classes critical for behav-

ioral responses to different CO2 concentrations (Lin et al.,

2013). However, one class highly selective for the V glomerulus

could not be functionally studied because no GAL4 line was
Figure 6. NBLAST Classification of Sexually Dimorphic Neurons

(A) fruitless mAL neurons. Hierarchical clustering (HC) of hits cut into two groups

sex of neuron: female or male.

(B) Neurons from two dendrogram groups: male (cyan) and female (magenta).

(C) Analysis of male mAL neurons. Neuron segments for terminal arbors (ipsi- an

three groups, I–III (h = 0.83). Arborization differences indicated by arrowheads. G

(D) fruitless P1 neurons. Plot of query neuron (fru-M-400046). Male enlarged brain

pMP-e fruitless neuroblast clone containing P1 neurons. The distinctive primary

(D0) HC of NBLAST hits for P1 trace divided into groups 1–10 (h = 0.92). Inset sh

neuron, colored cyan (male) and magenta (female). Below dendrogram, neuron p
identified. Searching this neuron, we found the fourth hit

(R86A05) was highly selective for this cell type (Figure 8E).

Finally, we take an auditory interneuron (AMMC-AMMC PN1;

Figures S6 and S2) and a presumptive visual interneuron of the

anterior optic tubercle. The top ten hits for both neurons included

numerous matching GAL4 lines; we display one example for

each in Figure 8F. Although all of these lines label multiple

neuronal classes, NBLAST enables very rapid identification of

lines containing a neuronal population of interest that could be

used for the construction of completely cell-type-specific lines

by intersectional approaches (Luan et al., 2006).

DISCUSSION

Comprehensive mapping of neuronal types in the brain will

depend on methods for unbiased classification of pools of thou-

sands or millions of individual neurons. Comparison of neurons

relies strongly onmorphology and brain position, essential deter-

minants of connectivity and function. A neuron similarity mea-

sure should (1) be accurate, generating biologically meaningful

hits; (2) be computationally inexpensive; (3) enable interactive

searches for data exploration; and (4) be generally applicable.

NBLAST satisfies all these criteria.

First, NBLAST correctly distinguishes closely related types

across a range of major neuron groups, achieving 97.6% accu-

racy for35 typesofolfactoryPNs.Unsupervisedneuronclustering

basedonNBLASTscorescorrectly organizedneurons into known

types. We did find that neuron sizes (especially when very small)

can influence the algorithm: one future direction is to convert

raw scores into an expectation (E) value that accounts for the

size of a neuron and the database in direct analogy to the results

of Karlin and Altschul (1990) for sequence alignments, although

the problem appears more complicated for neurons.

Second, NBLAST searches are fast, with pairwise compari-

sons taking about 2 ms on a laptop. Furthermore, for defined da-

tasets all-by-all scores can be pre-computed, enabling highly

interactive analysis. With data volumes increasing, one effective

approach to handle much larger numbers of neurons will be to

compute sparse similarity matrices, storing the top n hits for a

given neuron. Alternatively, queries could be computed only

against the non-redundant set of neurons that collectively

embody the structure of the brain (analogous to UniProt; Suzek

et al., 2007). For the fly brain, this could not exceed 50,000 neu-

rons (due to bilateral symmetry), and we expect the actual num-

ber to be �5,000. Our clustering of all 16,129 FlyCircuit neurons

identified 1,052 exemplars, providing a non-redundant dataset

that we use for rapid searches.
(h = 1.25). Inset shows mAL query neuron (fru-M-500159). Leaves labeled with

d contralateral) were isolated and NBLAST scores calculated. HC divided into

roup I (red) is further subdivided in two.

region (MER) shown in red (anterior and posterior views). Volume rendering of

neurite of pMP-e was traced.

ows neurons colored by group. Leaves labeled by GAL4 driver used to obtain

lots of each group; MER shown in gray for groups 9 and 10.
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Third, NBLAST enables multiple types of analysis. Searches

can use neuron fragments or tracings from complex image

data as queries and databases of GAL4 lines as targets. Closely

related neuronal types can be distinguished by clustering of only

their terminal arbors without considering common features such

as axon tracts.

Finally, one important question is the generality of our

approach. This largely reduces to the relationship between

length scales of neurons being examined and their absolute

spatial stereotypy. Our method implicitly assumes spatial co-

localization of related neurons; this is enforced by the use of im-

age registration. Our strategy should be appropriate for any sit-

uation in which neuronal organization is highly stereotyped at the

length scale of the neurons themselves. There is already strong

evidence that this is true across large parts of the brain for simple

vertebrate models like the larval zebrafish; indeed, we show that

our NBLAST method can be applied directly to olfactory projec-

tome data (Miyasaka et al., 2014). Mouse gene expression (Lein

et al., 2007) and long-range connectivity also show global spatial

stereotypy, as evidenced by recent atlas studies combining

sparse labeling and image registration (Zingg et al., 2014; Susaki

et al., 2014; Oh et al., 2014). Our method could be adapted for

querying and hierarchical organization of these datasets by

calculating an appropriate scoring matrix.

However, there are situations in which global brain registration

is not appropriate. For example, the vertebrate retina has both

laminar and tangential organization. Sümbül et al. (2014) recently

introduced a registration strategy that showed that lamination of

retinal ganglion cells is spatially stereotyped to the nearest

micron. However, retinal interneurons and ganglion cells are

organized in mosaics tangential to the retinal surface; global

registration is not appropriate in this plane. The situation is

similar for parallel columns of the outer Drosophila optic lobe.

Possible approaches include local re-registration, mapping neu-

rons onto a single canonical column, or amassing sufficient data

so that neurons from neighboring columns/mosaics tile the

brain, enabling identification of related groups by clustering or

graph theoretic approaches.

Cataloguing all neuron types in the brain will rely not only on

effective measures of neuronal similarity, but also on methods

for automated classification of neurons into functionally relevant

types. This is a challenging problem: it may be necessary to

combine morphological approaches with data such as connec-

tivity patterns, single-neuron gene expression patterns, or phys-

iological properties to provide unambiguous automated classifi-

cation (reviewed by Armañanzas and Ascoli, 2015). We have
Figure 7. Organizing Huge Neuron Datasets

(A) Affinity propagation generated 1,052 clusters. The mean within-cluster similar

cluster.

(B) Mean cluster score versus cluster size.

(C) Hierarchical clustering (HC) of 1,052 exemplars divided into three groups (A–

central brain neurons. Insets show neurons from these groups. Right inset show

(D) HC of central brain exemplars (groups B and C, inset) cut into 14 groups; h =

(D0) Neuron plots from dendrogram groups in (D). Main neuron types/innervated

(E) Affinity propagation of defined neuron types. Exemplar neurons (top row) or a

ure S6D) and VPN types LC10B (compare Figure 5B) and LC4 (compare Figure

(antennal mechanosensory and motor center) in green; wedge in magenta; AOT

protocerebrum) in purple; PLP (posterior lateral protocerebrum) in cyan.
shown that NBLAST scores define a highly effective similarity

metric that can be combined with hierarchical clustering and a

specific dendrogram cut height to define a very wide range of

neuronal classes. This approach enables very rapid exploratory

analysis of new cell types even without expert neuroanatomical

knowledge. Indeed, for Drosophila neurons it seems that

NBLAST clustering is sufficient to define cell type.

Sümbül et al. (2014) recently explored the issue of defining the

optimal dendrogram cut height for morphological clustering

of 363 mouse retinal ganglion cells, establishing a reliable

approach for these specific neurons. Nevertheless, our experi-

ence from the 16,129 neuron validation set is that differences

in similarity levels within classically defined neuronal types pre-

clude the existence of a universal value for dendrogram cut

height. Some of this range (0.7 to 2 in this study) is probably

due to differences in definitions: classic neuronal types may in

some cases require splitting for consistency—we see evidence

for this in the KC and visual PN datasets. More sophisticated sta-

tistical criteria may enable automated classification, especially

when combined with measurements of, e.g., physiological or

gene expression data (Armañanzas and Ascoli, 2015). However,

all approaches to defining cluster numbers (i.e., statistically

based cell types) depend on biological priors that must be

acknowledged. Nevertheless, NBLAST’s speed and sensitivity

and the size of this validation dataset represent a significant

step toward fully automated classification.

Finally, we note that NBLAST can identify genetic driver lines

labeling a given query neuron. The pre-computed NBLAST result

matrix that we provide for the GMRGAL4 collection (Jenett et al.,

2012) will be of immediate utility to Drosophila colleagues plan-

ning experimental studies of particular cell classes. Thus,

NBLAST can provide a vital link between studies of anatomical

logic and neural circuit function.
EXPERIMENTAL PROCEDURES

Image Preprocessing

flycircuit.tw supplied 16,226 raw confocal stacks, which we converted to

NRRD format with Fiji/ImageJ (http://fiji.sc/). We successfully preprocessed

16,204/16,226 total images, i.e., a 0.14% failure rate.

To make a template brain, we first averaged 17 female and 9 male brains to

construct sex-specific templates using the CMTK (http://www.nitrc.org/

projects/cmtk) avg_adm tool. We then averaged these two templates to

generate an intersex template (FCWB) used for all subsequent analysis. We

used CMTK to register images against this template first with a linear (9 de-

grees of freedom) and then a non-rigid registration (Rohlfing and Maurer,

2003; Jefferis et al., 2007). All registrations were checked by visual comparison
ity score was 0.559; mean cluster size = 10. Exemplars were identified for each

C). Group A corresponds mostly to optic lobe and VPN neurons; B and C to

s stray neurons removed (n = 11).

2.7.

neuropils are noted.

ll neurons (bottom row) for auditory AMMC-IVLP PN1 neurons (compare Fig-

S5B). Numbers of exemplars and neurons indicated in top left corner. AMMC

U (anterior optic tubercle) in green; LO, lobula; PVLP (posterior ventrolateral
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with the template in Amira (academic version, Zuse Institute). Poor registra-

tions (10%) were re-initialized using affine registration based on a Global

Hough Transform (Ballard, 1981; Khoshelham, 2007) calculated with an Amira

extension module available from 1000shapes GmbH, or Amira’s surface-

based registration module, resulting in 16,129/16,204 successfully registered

images (0.46% failure rate).

Chiang et al. (2011) included a segmented image for each neuron in their raw

confocal dataset. We skeletonized this image using the Fiji plugin ‘‘Skeletonize

(2D/3D)’’ (Doube et al., 2010) and then calculated a vector cloud representa-

tion for each skeleton (Masse et al., 2012) in R. Neurons on the right side of

the brain were flipped to the left by applying a mirroring and flipping registra-

tion as described in Manton et al. (2014). We also calculated an overlap score

for each neuron with the neuropil domains defined by Ito et al. (2014). See Sup-

plemental Experimental Procedures for further details.

Neuron Search

Our reference implementation is the nblast function in the R package

nat.nblast. Fast nearest-neighbor search depends on the nabo C++ library

(Elseberg et al., 2012). The scoring matrix that we used for FlyCircuit neurons

was constructed by taking 150 DL2 PNs, defining a neuron type at the finest

level, and calculating the joint histogram of distance and absolute dot product

for the 150 3 149 combinations of neurons, resulting in 1.4 3 107 measure-

ment pairs; the number of counts in the histogram was then normalized

(dividing by 1.4 3 107) to give a probability density, pmatch. We then carried

out a similar procedure for 5,000 random pairs of neurons sampled from the

FlyCircuit dataset to give prand. Finally, the scoring matrix was calculated as

log2ðpmatch + e=prand + eÞ, where ε= 10�6 (a pseudocount to avoid infinite

values).

Clustering

Weused twomethods for morphological clustering. For data subsets, we used

hierarchical clustering with Ward’s method (R function hclust). Dendrograms

were cut at a height selected for each class (range 0.7–2), shown by a dashed

line. By default, R plots the square of the Euclidean distance as the y axis, but

we use the unsquared distance.

We used affinity propagation to cluster the whole dataset (Frey and Dueck,

2007) implemented in R package apcluster (Bodenhofer et al., 2011). This iter-

ative method finds exemplars (representative members of each cluster) and

does not require a priori input on the final number of clusters. An input prefer-

ence parameter (p) can be set to control the final number of clusters. We used

p= 0, since this is the value where, on average, matched segments are equally

likely to have come from matching and non-matching neurons. Empirically,

this produced clusters that mostly grouped neurons of the same type accord-

ing to biological expert opinion.

Computer Code and Data

There is a dedicated website at http://jefferislab.org/si/nblast. This provides

online NBLAST search tools, a web version of the affinity propagation clus-

tering, video demos, and links to all computer code and data used to generate

the figures in this paper, along with the open source libraries we have written

and a help forum. See Supplemental Information for details.
Figure 8. NBLAST extensions

(A) LarvalDrosophila EM tracings. Tanglegrams match two different dendrograms

on the left, clustering based on synaptic connectivity network; on the right, NB

neurons. Left tanglegram compares network clustering to NBLAST clustering; rig

(B) Monarch butterfly central complex neurons.

(B0 ) Neurons after mirroring and clustering colored by dendrogram group. Some

(B0 0) Hierarchical clustering after mirroring neurons.

(C) Zebrafish mitral neurons. Left: hierarchical clustering after mirroring neurons

dendrogram group.

(D) Vector cloud representation of R43D01 expression pattern (blue) and query F

(D0) R43D01 expression pattern.

(E) Candidate V-glomerulus-selective GAL4 expression pattern with query neuro

(F) Identified GAL4 expression patterns found with AMMC-AMMC PN1 auditory
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